Fastening System Stiffness Measurement and Influence on Railway Track
2016 International Crosstie and Fastening System Symposium
Urbana, IL, USA
15 June 2016

Brandon Van Dyk
Outline

► Stiffness influence of the rail pad / fastening system to the track
 – Consequences of improper elasticity
 – Load distribution concepts
 – Zimmermann calculation and multi-body simulation

► EN / AREMA load categories and track types

► Relationship between load secants and elasticity

► Fastening system design methods to modify elasticity, load distribution, and deflections

► Conclusion
Improper elasticity in a rail support and its consequence
Vossloh Fastening Systems

Possible consequences of improper elasticity

- Head checks
- Corrugation
- Stiff pad deterioration
- Destruction of rail seat
Vossloh Fastening Systems

Consequence: destruction of the substructure (e.g. ballast – white spots)

► Inadequate elasticity within the track may lead to overloaded components within the track structure
► Stiff rail pads may cause high tie acceleration, resulting in deterioration of ballast and other portions of track structure
Noise and vibration – classic scheme

- **Primary airborne noise**
 - Emitted directly by the source
 - Inside or beside the vehicle
 - Inside buildings, passing through doors and windows

- **Secondary airborne noise**
 - Caused by vibrations of walls, floors, and ceilings
 - Relevant for subways, railways with noise barriers, and rooms not facing railroad tracks
 - Dominating at lower frequency range (20 – 200 Hz)
Load distribution
Vossloh Fastening Systems

Elasticity helps to distribute the wheel load

► Benefits of introducing elasticity into the track structure
 ► Pressure and load distribution
 ► Reduction of wear at wheel/rail interface
 ► Optimal rail deflection
 ► Reduction of bearing pressure and improved life cycle of all components
 ► Reduction of maintenance
 ► Improved ride comfort
 ► Increased shock/impact resistance

► Elasticity can be added via rail pads, base plate pads, under-tie pads (UTP or USP), under-ballast mats (UBM), or ‘floating slab’
Comparison of ballasted and slab track (example)
Zimmermann calculation and multi-body simulation (MBS)
Vossloh Fastening Systems

Zimmermann calculation – Important parameters

- **Inputs**
 - Fastening (tie) spacing
 - Pad stiffness (static and dynamic)
 - Rail profile
 - Speed
 - Axle load
 - Axle spacing
 - Track condition (including track modulus)

- **Outputs**
 - Rail deflection
 - Rail seat load
 - Pad deflection
 - Secondary deflection
 - Ballast pressure

Undesirable deflections can result in rail defects, breaks, component wear and deterioration, excessive noise and vibration, and high train resistance.

Q = wheel load
y = rail deflection with continuous support
δ = secondary deflection of the rail between two supports
Vossloh Fastening Systems

Zeit Unterlagen

Oberbau Projekt: DFF MC

Feste Fahrbahn
- Stützpunktlänge: $l = 139$ [mm]
- Stützpunktbreite: $b = 160$ [mm]
- Stützpunktabstand: $a = 650$ [mm]

Steifigkeit des Stützpunktes: $C_{stat} = 33.8164$ [kN/mm]

Dynamik - Variation
- $C_{dyn} = 44.8202$ dynamisch
- $C_{dyn} = 44.82$ dyn.

Dynamikfaktor
- $c_1 = 35$
- $c_2 = 1000.00$
- $c_1 = 1.3$
- $c_2 = 3$
- $c_1 = 45.5$
- $c_2 = 3000$

Schienenprofil: 60 E 1

Zug

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>optional</td>
<td></td>
<td>80000</td>
<td>2300</td>
<td>14800</td>
<td>2300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuschläge

<table>
<thead>
<tr>
<th>Zuschläge</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radkraftverlagerung:</td>
<td>max. y: 0.89 [mm]</td>
</tr>
<tr>
<td>Gleislage:</td>
<td>max. S: 30.01 [kN]</td>
</tr>
<tr>
<td>gut/mäßig</td>
<td>y Zwp: 0.03 [mm]</td>
</tr>
<tr>
<td>Geschwindigkeit:</td>
<td>max. dyn. y: 1.27 [mm]</td>
</tr>
<tr>
<td>$v = 90$</td>
<td>max. dyn. S: 56.97 [kN]</td>
</tr>
<tr>
<td>Reise-/Güterzug</td>
<td>dyn. y Zwp: 1.25 [mm]</td>
</tr>
<tr>
<td>$\varphi = 1.08$</td>
<td>dyn. y Zwp: 0.02 [mm]</td>
</tr>
</tbody>
</table>

stat. Sicherheit: 99.7, -> $t = 3$

Dynamikfaktor: 1.49

gesamter Dynamikaufschlag: 1.78

Sekundärdurchbiegung: 0.06 [mm] 4.7%

Grundwert der Biegelinie: 837 [mm]

Grundwert der Biegelinie dyn: 780 [mm]
Vossloh Fastening Systems

Example – slab track (15-tonne axle load)

17 kN/mm system stiffness
30 kN/mm system stiffness
Vossloh Fastening Systems

Modeling of track superstructure

Ballasted Track

Structural Analysis

Track Model

Rail, tie, ballast, subgrade
► MBS: rigid bodies
► FEM: with material properties

Rail (elastic) pad, USP, UBM
► MBS and FEM: elastic elements
Vossloh Fastening Systems

Vehicle-track interaction – multi-body simulation

Track with intermediate stiffness
Vossloh Fastening Systems

Vehicle on elastic track

European E-locomotive with axle load of 21.5 t

Graph showing elastic rail deflection over time for track sections with low and high stiffness.
EN / AREMA load categories and track types
Vossloh Fastening Systems

EN / AREMA load categories and track types

- EN 13481 (Performance requirements for fastening systems) defines five testing categories based on track/operating characteristics
 - Category A – Light rail
 - Category B – Heavy rail (metro lines)
 - Category C – Conventional rail
 - Category D – High speed rail
 - Category E – Heavy haul

- Qualification testing procedures and requirements vary based on track category

- AREMA Chapter 30 (Ties) doesn’t maintain track categories; loads, angles, and testing procedures generally represent heavy haul conditions
Relationship between load secants and elasticity
Vossloh Fastening Systems

Typical load-deflection diagram

- **Progressive characteristic**: e.g. rubbers and elastomers
- **Linear characteristic**: e.g. spring Fe 28
- **Regressive characteristic**: e.g. archery bow
Vossloh Fastening Systems

Elastomer load-deflection diagram

<table>
<thead>
<tr>
<th>Force (kN)</th>
<th>Deflection (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kN ≈ 2.25 kips</td>
<td>2.5 mm ≈ 0.1 in</td>
</tr>
</tbody>
</table>

10 kN ≈ 2.25 kips 2.5 mm ≈ 0.1 in 15 June 2016
Vossloh Fastening Systems

Elastomer load-deflection diagram

Traffic load

Fastening system toe load

- Secant 20 – 95 kN
- spring curve Zw
- relief curve
- load curve

10 kN ≈ 2.25 kips
2.5 mm ≈ 0.1 in

Deflection (mm)

15 June 2016
Elastomer load-deflection diagram

- Secant 20 – 95 kN
- Spring curve Zw

<table>
<thead>
<tr>
<th>Force (kN)</th>
<th>Deflection (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kN</td>
<td>≈ 2.25 kips</td>
</tr>
<tr>
<td>2.5 mm</td>
<td>≈ 0.1 in</td>
</tr>
</tbody>
</table>
Vossloh Fastening Systems

Importance of the measuring secant

- Static vertical stiffness, according to EN 13146-9
 - 18-68 kN secant: high speed (Category D)
 - 20-95 kN secant: heavy haul (Category E)
- With some materials, same rail pad can record two different nominal stiffnesses (e.g. difference of around 23%)

10 kN ≈ 2.25 kips 2.5 mm ≈ 0.1 in
Fastening system design methods to modify elasticity, load distribution, and deflection
Vossloh Fastening Systems

Modifying elasticity via different rail pad materials

► Heavy haul freight or industrial lines ($c_{stat} > 200$ kN/mm (1.1 million lb/in))
 ► EVA
 ► HDPE
 ► TPU (current standard for North American Class I railroads)

► Conventional, high-speed, and transit ($8 < c_{stat} < 200$ kN/mm)
 ► TPU
 ► TPE
 ► PU
 ► NR/BR
 ► EPDM
Vossloh Fastening Systems

Microcellular EPDM

- Very high resilience (with no border flow or plastic deformation)
- Excellent noise and vibration damping
- Minimal elasticity changes in the working temperature range (-50°C to +100°C (-58°F to 212°F))
- Aging-, weather-, ozone-, and UV-resistant
- Very low water absorption (closed cell)
Vossloh Fastening Systems

Modifying elasticity via different geometries

► Utilization of different geometries in rail pads affects stiffness, load distribution, and rail deflections
 ► Studs, dimples, or grooves can provide stiffness variation while maintaining particular material and thickness
 ► Large variations in stiffness can be achieved with modification of thickness and bearing area
► Rail pads with reinforced (thicker) edges improves load distribution and decreases rail tilting, resulting in decreased clamp dynamic loading, decreased component wear, and decreased dynamic gauge widening
Vossloh Fastening Systems
Improving load distribution – utilizing a load distribution plate and large elastic pad

Static Load:
41.9 kN (9.4 kip)

Load assumption for high speed traffic, per Zimmermann

Static Load:
39.5 kN (8.9 kip)

Static load rail pad pressure:
1.884 N/mm² (273 psi)

Static load elastic base plate pressure:
0.974 N/mm² (141 psi)
(52% of rail pad pressure)
Vossloh Fastening Systems

Conclusion

► Elasticity exists in the track within many components and can be modeled to achieve proper understanding

► Careful selection of proper fastening system elasticity has effect on many track characteristics and components

► Method of measuring stiffness is critical for understanding nominal values

► Design of fastening system can have significant effect on elasticity, load distribution, and track deflections

 – Utilization of proper materials, geometry, and additional components will allow for improved performance and increased life cycles
Vossloh Fastening Systems

Questions

► Brandon Van Dyk
Technical Engineer
Vossloh Fastening Systems America
e-mail: brandon.vandyk@vossloh-usa.com